Pacainal Fahrum, 22, 1004

THE GENOMIC ORGANIZATION OF HUMAN ANGIOTENSIN II TYPE 1 RECEPTOR

Deng-Fu Guo, Hiroaki Furuta, Masato Mizukoshi and Tadashi Inagami

Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232

Received February 22, 19	774	
_		

SUMMARY: As a step toward the elucidation of human Ang II type 1 receptor gene expression, the genomic organization of the human AT1 receptor was investigated. Comparison of the genomic DNA and cDNA sequences revealed that it consists of at least five exons. The length of the AT1 receptor gene is greater than 55 kb, and the size of the exons ranges from 59 to 2,014 base pairs. Four of the exons encoded 5'-untranslated sequences. Multiple transcription initiation sites were observed by primer extension experiment. The promoter function was examined by using luciferase as a report gene in transfected human vascular smooth muscle cells. • 1994 Academic Press, Inc.

Angiotensin II (Ang II) exerts a wide variety of physiological effects on the cardiovascular, renal endocrine, and central and peripheral nervous system (1). Reflecting the versatility of the biological effects mediated by Ang II, its receptors are present in a wide variety of tissues (2). Cloning of human AT₁ receptor cDNA and genomic DNA has been reported (3-8). However, its genomic structure is unknown. In order to elucidate the mechanism of transcriptional regulation of the human AT₁ receptor gene and to facilitate analysis of a possible genetic disorders of the human AT₁ receptor, we have isolated and analyzed the human AT₁ receptor gene. In this study, we report the genomic organization of the human AT₁ receptor gene with evidence for the presence of five exons, the first four encoding 5'-untranslated sequences. The promoter/luciferase constructs were used to determine the promoter function in transfected human vascular smooth muscle cells (VSMCs).

MATERIALS AND METHODS

Cloning of the cDNA library. A human liver cDNA library in lambda ZAP was obtained from Stratagene (La Jolla, CA). A total of 4 X 10^6 lambda phages were screened on nylon membranes. The *Eco*RI DNA fragment (0.8 kb) of rat AT $_1$ A cDNA, that contained the coding region, was used as a probe. Positive DNA clones were subcloned into a Bluescript KS(+) vector for further analysis.

Plasmids. Four different human AT₁ cDNAs were isolated and used in this study. They were called pC1, pC2, pC3 and pC4, respectively (Fig. 1). The 5'-flanking region of the human AT₁ gene, spanning the first exon was subjected to double restriction enzyme digestion with *HindIII* and *ClaI*, subcloned in the Bluescript vector (pDF) and used to construct the promoter/luciferase fusion gene.

Cloning of the genomic library. A human lymphocyte genomic library in lambda DASH II was obtained from Stratagene (La Jolla, CA). A total of 4 x 10⁶ lambda phage plaques were screened on nylon membranes. For the isolation of DNA fragments encoding the human exon 1, 2 or 3, fragments digested with *EcoRI* and *AccI* from the plasmids, pC1, pC2 and pC3, were used as combination probes. For the isolation of DNA fragment encoding exon 4, the *EcoRI-RsaI* fragment from the plasmid pC4 was used as a probe.

DNA sequence. The nucleotide sequence of the 5'-flanking region of the human AT₁ gene was determined by the dideoxy chain termination method. Computer analysis of the sequence data was carried out by using the software of IntelliGenetics, Inc.

Primer extension. The 21-mers antisense oligonucleotide, 5'-CAGACGTCCTGT CACTCGCTG-3' (Fig. 4) was end-labeled with γ -32pATP. Total RNA isolated from human placenta and liver were used. The primer-extended DNA products were run on a sequencing gel alongside a dideoxy sequencinf ladder prepared with the same primer.

Expression of human AT₁ promoter/luciferase constructs. Eight human promoter fragments were deleted from pDF plasmid, and inserted into pGL2 basic lusiferase vector. Ten μg of each constructs was transfected into 1x10⁶ human vascular smooth mascle cells by DEAE-dextran transfection method. After transfection 48h, the luciferase activity was mesured by using TROPIX, a leader in luminescence (MGM INC., Hamden, CT).

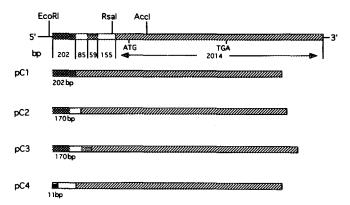


Fig.1. Schematic illustration of human AT1 receptor cDNAs. The four human AT1 cDNA clones (pC1, pC2, pC3 and pC4) are shown. Each contained different exons which are indicated by () for exon 1, () for exon 2, () for exon 3, () for exon 4 and () for exon 5, respectively. The restriction enzymes used in this study are marked. The location of the start site codon ATG and the termination codon TGA are also marked. The length of each exon is indicated by base pair numbers. The cDNA on the top is the composite full length cDNA.

RESULTS AND DISCUSSION

Cloning of human AT₁ cDNA. Four human AT₁ cDNAs, differing in their 5' untranslated regions, were cloned from human liver cDNA library. They were named each as pC1, pC2, pC3 and pC4 (Fig. 1). Of those, clones pC1 and pC2 were identical to two previously reported cDNAs, respectively (5,8). On the other hand, clones pC3 and pC4 were found to contain additional exons which have not been reported to date. Clone pC3 contained a part of exon 1 (170 bp), full

CTAGCAGCTCTGCCGGGCGCGGGGGTGATCGATGGGGAGCGGCTGGAGCGGACCCAGCGAGTGAGGGCGCACAGCC GGGACGCCGAGGCGGCGGGGAGACCCGCACCAGCGCAGCGGCCCTCGGCGGACGTGACGCAGCGCCCGGGGC ${\tt GCGgtgagtcccgcggaccgccahcatgcttgggggacttcaagggcggggtgctaagtttcatgtcatgtcacggt}$(intron 1)..... ATTGATCTAAAATGGCTGGGTTTTTTATCTGAATAACTCACTGATGCCATCCCAGAAAGTCGGCACCAGgtaaatgcc(intron 2)..... ${\tt accacagtgtgaacttaataacaccaacaaaagttccaaagctctagggtctcatagcacctccagatccatgatct}$ ttattattatcatcatttttccagGATGAAGAAAATGAATCACAAGTCAACTGACAGTCCAAAGGCTCCACAGCTCAGAGTCAGAGTCAAGTCAAAGGCTCCACAGGCTCAGAGTCAGAGTCAAGTCAAGTCAAAGGCTCCACAGGCTCAGAGTCAGAGTCAAGAGGAGg taaat cat gt g ct taat to a gaa ctttt g g ct cocat cact at g ctctt cocact g t cttaact ct g g t t g cact at g ctctt cacact g t cttaact ct g g t t g cact at g ctcttaact ct g g t t g cact at g ctcttaact ct g g t t g cact at g ctcttaact ct g g t t g cact at g ctcttaact ct g g t t g cact at g ctcttaact ct g g t t g cact at g ctcttaact ct g g t t g cact at g ctcttaact ct g g t t g cact at g ctcttaact ct g g t cact at g ctcttaact ct g g t ctcttaact ct g ctcttaact c $\verb|tcacctgagccattgtgtttcttctcaggtagatcttagttcttcctgagaaggtatgaaggtgggtatccacccta|$(intron 3)...... agctgactcatggagttgtatcccttgcacagatcccctttgcaccaaagtgaacactactctaagaacatgtgttc GCATGCCATTGCAAGAGAATGCTCAGCCATGTTCATCTGGGGACCTGCTCCTGGTAGAGCAATAGGATCTGTGCCCA GCACCACTGCCCACCTAGCTGTCCTGGCCTGTGCCCAATGCTGACCTTCACCTCAGAGTGTGGCTGTACCACATTCG gtatgtcactctcactgaaccttcagcctccttctgggacttctgatggactgttatcagggcagaatgtgttgatt.....(intron 4).... ttcacaqtqtttccttaaqaaatatqatccaqtattttttcctaaqactaaaqttqtqaqttactacqtttatqact qaqaaatqaatqtttqttaqtttqtttqtttacaataaqaatttttttctttaccattttatttttattttccccaqG TGTATTTGATATAGTGTTTGCAACAAATTCGACCCAGGTGATCAAALATGATTCTCAACTCTTCTACTGAAGATGGT ATTAAAAGAATCCAAGATGATTGTCCCAAAGCTGGAAGGCATAATTACATATTTGTCATGATTCCTACTTTATACAG ${\tt TGGCCAGTGTTTTCTTTTGAATTTAGCACTGGCTGACTTATGCTTTTTACTGACTTTTGCCACTATGGGCTGTCTAC}$ $\tt CGCTAGTGTGTTTCTACTCACGTGTCTCAGCATTGATCGATACCTGGCTATTGTTCACCCAATGAAGTCCCGCCTTC$ GACGCACAATGCTTGTAGCCAAAGTCACCTGCATCATCATTTGGCTGCTGGCAGGCTTGGCCAGTTTTGCCAGCTATA ${\tt ATCCATCGAAATGTATTTTCATTGAGAACACCAATATTACAGTTTGTGCTTTCCATTATGAGTCCCAAAATTCAAC}$ CCTTCCGATAGGGCTGGGCCTGACCAAAAATATACTGGGTTTCCTGTTTCCTGTTCTGATCATTCTTACAAGTTATA CTCTTATTTGGAAGGCCCTAAAGAAGGCTTATGAAATTCAGAAGAACAAACCAAGAAATGATGATATTTTTAAGATA ATTATGGCAATTGTGCTTTTTCTTTTTCCTGGATTCCCCACCAAATATTCACTTTTCTGGATGTATTGATTCA ACTAGGCATCATACGTGACTGTAGAATTGCAGATATTGTGGACACGGCCATGCCTATCACCATTTGTATAGCTTATT TTAACAATTGCCTGAATCCTCTTTTTTATGGCTTTCTGGGGAAAAATTTAAAAGATATTTTCTCCAGCTTCTAAAA TATATTCCCCCAAAAGCCAAATCCCACTCAAACCTTTCAACAAAAATGAGCACGCTTTCCTACCGCCCCTCAGATAA TGTAAGCTCATCCACCAAGAAGCCTGCACCATGTTTTGAGGTTGAGTGACATGTTCGAAACCTGTCCATAAAGTAAT TTTGTGAAAGAAGAAGAAGAAGAACATTCCTCTGCAGCACTTCACTACCAAATGAGCATTAGCTACTTTTCAGAATT AAGACAAAGCAAAGCCACATTTTTGCATTAGACAGATGACGGCTGCTCGAAGAACAATGTCAGAAAACTCGATGAATG TGTTGAGTTTGAGAAATTTTACTGACAGAAATGCAATCTCCCTAGCCTGCTTTTGTCCTGTTATTTTTATTTCCACA TAAAGGTATTTAGAATATTAAATCGTTAGAGGAGCAACAGGAGATGAGAGTTCCAGATTGTTCTGTCCAGTTTCC AAAGGCAGTAAAGTTTTCGTGCCGGTTTTCAGCTATTAGCAACTGCTGCTACACTTGCACCTGGTACTGCACACTTT TGTACAAAGATATGCTAAGCAGTAGTCGTCAAGTTGCAGATCTTTTTGTGAAATTCAACCTGTGTCTTATAGGTTTA CACTGCCAAAACAATGCCCGTAAGATGGCTTATTTGTATAATGGTGTTACTAAAGTCATATAAAAGTTAAACTACTT GTAAAGGTGCTGCACTGGTCCCAAGTAGTAGTGTCTTCCTAGTATATTAGTTTGATTTAATATCTGAGAAGTGTATA TATGTATATCTATATCTCTAAACTGCTGTTAATTGATTAAAATCTGGCAAAGTTATATTTACTTTAAAATAAAATAA tatgaatatatttttatttaaattttgatacaactgatagtttaatactattggttatagattttttatcctgacat

Fig. 2. The intron/exon nucleotide sequences of the human AT₁ gene. Exon sequences are shown in capital letters. The first base of exon 1 is the 5' end of cDNA.

length of exons 2 (85 bp), 3 (59 bp) and 5 (2014 bp). Clone pC4 was different from pC1, pC2 and pC3 in that it contained an 11 bp partial sequence of exon 3 and full length exons 4 (155 bp) and 5 (2014 bp). The sequence of each exon is summarized in Fig. 2. In the present study, we have found two cDNA clones contained additional sequences which had not been reported so far (pC3 and pC4, see Fig.1). These two additional sequences arise by alternative splicing, and the length were 59 and 155 bp, respectively.

Cloning and characterization of human AT1 genomic clones, we succeed to clone five different clones which contain distinct exons of human AT1 receptor from a human lymphocyte genomic library by using combination of ³²P-labeled pC1, pC2, pC3 and pC4 cDNA probes. Five different clones which contained different exons were used to construct the map of human AT1 gene with sites for restriction endonuclease EcoRI, BamHI and HindIII (Fig. 3). In addition, the sequence of exon/intron junctions from human AT1 gene are shown in Fig. 2. The 5' intron border invariably starts with GT, and the 3' border terminates with AG. These features are consistent with reported donor and acceptor consensus sequences. The human AT1 gene consists of five exons divided by four introns, whereas the rat AT1A and AT1B receptor genes contained four exons and three exons, respectively (9,10). In addition, the rat AT1A and AT1B gene had 2 exons in the 5' untranslated region and third exon contained the entire open reading frame, the human AT1 receptor gene contained 4 exons in the 5' untranslated region, the fifth exon contained the entire coding region. Independent of our work, Bergsma et al. (6) reported that one clone of human cDNA had a 23 bp sequence which had not been found in our cDNA in the 5' untranslated region. It is possible that the additional exon containing this 23 bp

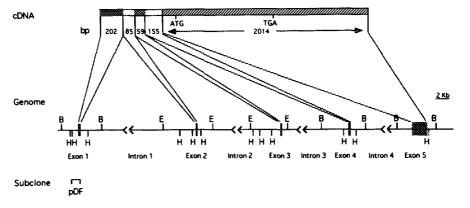
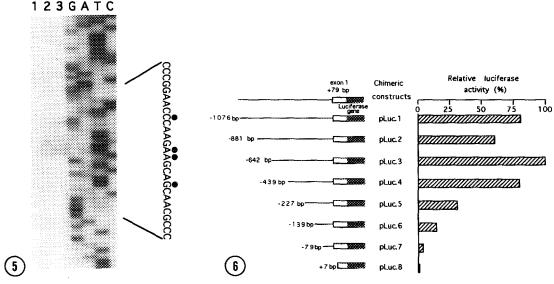


Fig. 3. Structure of the human AT₁ receptor gene. The AT₁ receptor gene consists of five exons and four introns. The fifth exon contains the entire coding region from the translation start codon ATG to the stop codon TGA. Exons are indicated by solid boxes. Intron regions are numbered as intron 1 through intron 4. The restriction map and subcloning strategy are also shown. E: *EcoRI*; B: *BamHI*; H: *HindIII*.

AAGCTTGCTG HindIII	GGGTTTTGAT	AGAGATTTTG	TTTAACCTGT	AGATCATTTG	AAGATTAATG	CCATTGTAAC	GATATTAAAT	-2501
	AAGAACATGG	AATGTCATTC	CATTTATTTA	GGTCTACCTT	ATTTCAACAA	TTCTTTTTGT	TTGTTTTCAG	-2421
ACTACAAGTT	TTAGATCCTT	TTGTTAAATT	TATTTCTTAG	GGTTTTTTT	GTTTTGTTTT	GTTTTGTTGG	TTGGTTGGTT	-2341
TGTTTTGAGA	TGGAGTCTCA	CTCTGTCACC	CAGGCTGGAG	TGCAGTGGCA	CAATCTCAGC	TCACAGCAAC	CTCTACCTCC	-2261
TGGGTTCAAG	CGATTCTTCT	GCCTCAGCCT	CCTCCTCCTG	AGTAGCTGGA	ACTACAGGCA	TGCACCACCA	CGCCTGGCTT	-2181
TTTTTTTTTT	TTTTTTTTT	GCATTTTTAG	TAGAGACAGG	GTTTCACGAT	GTTGGCCAGC	CTGGTCTCGA	ATCCCTGACC	-2101
TTGTGATTCA	CCCACCTCGG	CCTCCCAAAG	TGCTGAGATT	ACAGGAGTGA	GCCACTACAC	CAGGTCATTT	CTTGATATTT	-2021
TTACTCTTTT	GATCTATAGT	AAGTAAAATT	GTTTTTATCT	TTGAATTTTT	AATTTTTAA	CACAGTTCAA	ATCAGTGTGT	~1941
CTGATTTCAT	CTCCTTCTCT	AACAAACCAG	GGTGCCAGAA	CTGCTTCAGT	TTCTCTGCCT	TCTCTTTGTC	TATGATGACT	-1861
AATGTATGAA	GGTATCTGCT	GCATCAAACT	TTAAACTTCA	CATTATCCTT	ATTTCTCTTG	ACCTTGACAG	ATCTGGCATC	-1781
TTTTCACCTG	GCTGTAAGCA	GAAAGTCCTT	GATCTCCTTA	ACTTTTTGAG	GCATGGCAGC	ATGTGAGGCA	GGGAGAGGAC	~1701
ACAGACCCAC	ACAGCAAGTG	GTGAGAAGCC	AACAGTGGAA	TTGTTTTCTT	AATTCCATTT	GTTGATTGTT	TATTGCTAGT	-1621
GTATAGAAAT	ACAACTGATT	TTTGTATATT	GATCTTGTAT	TCTAAAAACT	TGCTCAACTT	GTTTCTTAGT	TCTAATAGTT	-1541
AATTAATTGA	TTCCTTAGGG	CTTTTTAATA	CAAGATCATG	TCATCTACAA	ATAGAAATTG	TTTTACTTTC	TTTCTAATCT	-1461
GGATGCCATT	TATCTTTTT	TCTTGTCCAA	TTGCCCTCAC	TAGAACCTTT	AGTACAAAGT	TAAATAGAAA	TGGGAAGACT	-1381
AGACATTTTG	TCTTGTTCCT	GATCTTAGAC	ATAAAAACGT	TGTCTTCCGT	TATTATGTGT	GATATTAGTT	AAGTTAAGTT	-1301
TTTCATAAAT	AAACTTCACA	GTTTGAGGAA	GTTCCTATTC	CTAGTTTGTT	GAGTGTTAGC	ATGAAAAAGT	GTTGAATTTT	-1221
GTCCAATAGT CAAT box	TAAAAATTT	TTTTTAGAC	AATCATGTAG	GCTTTGTCCA	TTTTTTACTT	CTTTAAATTT	ATTTTTATTG	-1141
	GATGTACACT	TTTTAGGTAC	ATGCAATAAT	TTAATGCCCC	TCACTATAAA TATA box	TTCGGAGCTG	CCTCCTCGCC	-1061
GATGATTCCA	GCGCCTGACA	GCCAGGACCC	CAGGCAGCAG	CGAGTGACAG		GTACATGCAA	TAATTTAATG	-981
CATTCATATA TATA h	AAGATCAAAT	CAGTGCAATT	GGCATATCCA	TCACCTTAAA	TATTTGTCTT	TTTCTTCATG	CTAGAAACAT	-901
TCAAGTTATT	TTCTCCTAGC	TACTCTGAAA	TATACAATAG	ATTACTGTAA	ACTACAGTCA	CCCTACTCAC	CTATCTAACA	-821
TTAATTGATT	TTTGGTAAAC	TAATCTAATC	TTGCTTTCTG	GCATCAACCT	CACTTGACCA	TGGTGTATAG	TCCCTTTCAT	-741
ATGTTATTGG	ATTCAATTTG	COMINGS MARKET						
GATGTCTTTA		CCIMCATITI	GTTGAGAATT	TTTATCTATA	CTCTTAAGAA	ATATTGATCT	GTAGTCTCGT	-661
	TCTGGTTTTG							-661 -581
TTTGGAAGAG	TCTGGTTTTG TTTGTGAAGA	TTATCAGGGT	GATACTGGCC	TCATAGCATG	AGTTGGGAGA	TCATCCTTAC	тсттстаттт	
	TTTGTGAAGA CATGT CCAAT	TTATCAGGGT ATTGATATTA AGGAACAAAT	GATACTGGCC TTTCTTCTTT	TCATAGCATG AAATATTTAT	AGTTGGGAGA TGGGTTTTTA	TCATCCTTAC AAATACATTT	TCTTCTATTT TTAAAATGCA	-581
ACTTGGGTAG	TTTGTGAAGA	TTATCAGGGT ATTGATATTA AGGAACAAAT	GATACTGGCC TTTCTTCTTT GAGTGTCCAC	TCATAGCATG AAATATTTAT CCTTGAATTT	AGTTGGGAGA TGGGTTTTTA CATAACCCTC	TCATCCTTAC AAATACATTT GGAATTAATC	TCTTCTATTT TTAAAATGCA CATGTAATCT	-581 -501
ACTTGGGTAG ATGATCCACA	TTTGTGAAGA CATGT CCAAT CAAT 1	TTATCAGGT ATTGATATTA AGGAACAAAT OOX CAAAGTTCGA	GATACTGGCC TTTCTTCTTT GAGTGTCCAC GTTACTCATA	TCATAGCATG AAATATTTAT CCTTGAATTT GGAAAGAGAA	AGTTGGGAGA TGGGTTTTTA CATAACCCTC AGAAGTTCTC	TCATCCTTAC AAATACATTT GGAATTAATC TAATTCGTCC	TCTTCTATTT TTAAAATGCA CATGTAATCT TTAAAAGTTT	-581 -501 -421
ACTTGGGTAG ATGATCCACA TCCAAGTTCA	TTTGTGAAGA CATGTCCAAT CAAT t ACTGTATTAC GAAAAAAAAA CTCGCTAGGC	TTATCAGGGT ATTGATATTA AGGAACAAAT OX CAAAGTTCGA ATGTTGAAGA GGGGTTCGGG	GATACTGGCC TTTCTTCTTT GAGTGTCCAC GTTACTCATA ACACGAATCT	TCATAGCATG AAATATTTAT CCTTGAATTT GGAAAGAGAA CCGCAGGAAA	AGTTGGGAGA TGGGTTTTTA CATAACCCTC AGAAGTTCTC TGATACTCCT	TCATCCTTAC AAATACATTT GGAATTAATC TAATTCGTCC GTACCCCCAG	TCTTCTATTT TTAAAATGCA CATGTAATCT TTAAAAGTTT CTCGCTCTCC	-581 -501 -421 -341
ACTTGGGTAG ATGATCCACA TCCAAGTTCA CTCACGACCC	TTTGTGAAGA CATGTCCAAT LACTGTATTAC GAAAAAAAAA CTCGCTAGGC GC bc GTCAATATCC	TTATCAGGGT ATTGATATTA AGGAACAAAT OX CAAAGTTCGA ATGTTGAAGA GGGGTTCGGG	GATACTGGCC TTTCTTTT GAGTGTCCAC GTTACTCATA ACACGAATCT ACCAGGTGAA	TCATAGCATG AAATATTTAT CCTTGAATTT GGAAAGAGAA CCGCAGGAAA CGCTGATCTG	AGTTGGGAGA TGGGTTTTTA CATAACCCTC AGAAGTTCTC TGATACTCCT ATAGTTGACA TCCGGGGCCG	TCATCCTTAC AAATACATTT GGAATTAATC TAATTCGTCC GTACCCCCAG CGGGACGACT GGCGGACGACT	TCTTCTATTT TTAAAATGCA CATGTAATCT TTAAAAGTTT CTCGCTCTCC GTGGCATCAT	-581 -501 -421 -341 -261
ACTTGGGTAG ATGATCCACA TCCAAGTTCA CTCACGACCC CCTTGCTGCC	TTTGTGAAGA CATGTCCAAT E ACTGTATTAC GAAAAAAAAA CTCGCTAGGC GC bo	TTATCAGGGT ATTGATATTA AGGAACAAAT DOX CAAAGTTCGA ATGTTGAAGA GGGGTTCGGG OX CGAGAGGGAG	GATACTGGCC TTTCTTCTTT GAGTGTCCAC GTTACTCATA ACACGAATCT ACCAGGTGAA GAGGTTGGGC	TCATAGCATG AAATATTAT CCTTGAATTT GGAAAGAGAA CCGCAGGAAA CGCTGATCTG CGGGAGGGTC	AGTTGGAGA TGGGTTTTA CATAACCTC AGAAGTTCTC TGATACTCCT ATAGTTGACA TCCGGGGGCGG SP1	TCATCCTTAC AAATACATTT GGAATTAATC TAATTCGTCC GTACCCCCAG CGGGACGACT GGCGGACGACT GGCGGACGAC SP1	TCTTCTATTT TTAAAATGCA CATGTAATCT TTAAAAGTTT CTCGCTCTCC GTGGCATCAT GAGGGAATGC	-581 -501 -421 -341 -261 -181
ACTTGGGTAG ATGATCCACA TCCAAGTTCA CTCACGACCC CCTTGCTGCC AAAACAGAGC TCCAGCGCCT	TTTGTGAAGA CATGTCCAAT CAAT ACTGTATTAC GAAAAAAAA CTCGCTAGGC GC bc GC bc GTCAATATCC CRE CTCGTCCCCG	TTATCAGGGT ATTGATATTA AGGAACAAAT OXAAGTTCGA ATGTTGAAGA COOGTTCGGG XX CGAGAGGGAG GAACCCAAGA ACCCCAAGAA ACCCCAAGGAA	GATACTGGCC TTTCTTTT GAGTGTCCAC GTTACTCATA ACACGAATCT ACCAGGTGAA GAGGTTGGGC AGCAGCAACG GCAGCGAGTG	TCATAGCATG AAATATTAT CCTTGAATTT GGAAAGAGAA CCGCAGGAAA CGCTGATCTG CGGGAGGGTC CCCCTCACTA ACAGGACGTC	AGTTGGAGA TGGGTTTTA CATAACCCTC AGAAGTTCTC TGATACTCCT ATAGTTGACA TCCGGGGGGG TAAATTCGGA	TCATCCTTAC AAATACATTT GGAATTAATC TAATTCGTCC GTACCCCCAG CGGGACGACT GCCGGACGACT CCCCCCTCCT CCCCCCTACC	TCTTCTATTT TTAAAATGCA CATGTAATCT TTAAAAGTTT CTCGCTCTCC GTGGCATCAT GAGGGAATGC CGCCAATGAT AGCTCTGCCG	-581 -501 -421 -341 -261 -181

Fig. 4. Sequence analysis of the 5'-flanking region of the human AT₁ receptor gene. To examine the nucleotide sequence of the promoter regions of the human AT₁ receptor gene, a 2659 base-pair *HindIII/-ClaI* fragment spanning exon 1 was subcloned into Bluescript vector (pDF). Sequence analysis was performed as described in Materials and Methods. Recognized consensus sequences are bracketed and labeled: (i) TATA box; (ii) CAAT box; (iii) Sp1 recognition sequence; (iv) CRE sequence; (v) GC box. The transcription initiation sites are indicated by black dots. The primer used in primer extension is indicated by underline.


5' untranslated region may exist in the human AT₁ gene and spliced differently. Exons 1 through 4 of the human AT₁ receptor gene are small (<250 bp) and are located in 5' untranslated region. A similar results were observed in rat AT₁A and AT₁B receptor gene (9,10).

The 5'-flanking region of human AT₁ receptor gene. The 2.6 kb HindIII-Clal 5'-flanking region was completely sequenced and analyzed using a computer

program that identified known regulatory sequences (Fig. 4). Two putative TATA boxes, two CAAT boxes, two overlapping SP1 recognition sequence, a GC box and a cyclic-AMP induced responsive element were found. It seems that human AT₁ promoter is unusual because it contains characteristics of both housekeeping genes and regulated genes promoters. Most eukaryotic promoters include a TATA box, upstream regulatory sequences such as CAAT boxes, and tissue-specific or hormonal-responsive elements (11,12). Conversely, a typical housekeeping gene does not contain a TATA box, is GC-rich, and its transcription is initiated at several sites (13).

Primer extension. The sites of transcription initiation are shown in Fig. 5. Two major bands were observed at position -70, and -71 bp upstream the 5' end of the cDNA. The other primer extension products were observed at -66, and -76 bp upstream the 5' end of the cDNA. The top band (-76 bp) corresponded to C, not A or G. It may cause to polymerase stop sequence in the RNA shortly.

Expression of human AT₁ promoter/luciferase constructs in human VSMCs. Total of eight human AT₁ promoter/luciferase chimeric constructs were used to mesure their enzyme activity in human VSMCs (Fig. 6). In experiment with the

<u>Fig.5.</u> Mapping of the sites of transcription initiation by the primer extension analysis. Lane 1: fifty μg of yeast tRNA, lane 2: two hundred μg of total RNA from the human placenta and fifty μg of total RNA from human liver. Marker lanes G, A, T and C indicate sequencing ladders of the human gene using the same primer.

<u>Fig.6.</u> Expression of human promoter/luciferase constructs in human VSMCs. The chimeric human promoter/luciferase constructs are presented with a line, and the names of the constructs are given. The relative luciferase values are expressed as percentages of the activity obtained with the pLuc.3 (100%). The values are obtained from three individial experiments.

pLuc.3, the highest luciferase activity was obtained, and the luciferase level obtained with this was taken as 100% in each experiment. Transfection with pLuc. 1 and pLuc.4 gave higher luciferase levels that were about 79% of those obtained with pLuc.3. A positive regulatory region may locate between pLuc.1 and pLuc.2, and one negative regulatory region may locate between pLuc.2 and pLuc.3 by comparison of pLuc.1 through pLuc.3 luciferase activity. Transfection with pLuc.8 gave a background luciferase activity. A similar result was observed when transfected with pGL2 basic plasmid itself (data not shown).

ACKNOWLEDGMENT

This work was supported by Research Grants from the National Institute of Health of U.S.A. HL14192 and HL35323.

REFERENCES

- Peach, M.J. & Dostal, D.E. (1990) J. Cardiovascular Pharm. 16, (Suppl.4) S25-S30.
- 2. Millan, M.A., Carvallo, P., Izumi, S.I., Zemel, S., Catt, K.J. & Aguilera, G. (1989) *Science* 244, 1340-1342.
- Yoshida, H., Kakiuchi, J., Guo, D.F., Furuta, H., Iwai, N., Van der Meer de Jong, R., Inagami, T & Ichikawa, L. (1992) Biochem. Biophys. Res. Commun. 186, 1042-1049.
- 4. Furuta, H., Guo, D.F., & Inagami, T. (1992) *Biochem. Biophys. Res. Commun.* 183, 8-13.
- 5. Takayanagi, R., Ohnaka, K., Sakai, Y., Nakao, R., Yanase, T., Haji, M., Inagami, T., Furuta, H., Guo, D.F., Nakamuta, M. & Nawata, H. (1992) Biochem. Biophys. Res. Commun. 183, 233-259.
- 6. Bergsma, D.K., Ellis, C., Kumar, C., Nuthulaganti, P., Kersten, H., Elshourbagy, N., Griffin, E., Stadel, J.M. & Aiyar, N. (1992) *Biochem. Biophys. Res. Commun.* 183, 989-995.
- 7. Mauzy, C.A., Hwang, O., Egloff, A.N., Wu, L.H. & Chung, F.Z. (1992) Biochem.. Biophys. Res. Commun. 186, 277-284.
- Curnow, K.M., Pascoe, L. & White, P.C. (1992) Molec. Endocrinol. 6, 1113-1118.
- 9. Takeuchi, K., Murphy, T.J., Nakamura, Y. & Alexander, R.W. (1992) Hypertension 20, 411.
- 10. Guo, D.F. & Inagami, T. Biochimica et Biophysica Acta (in press).
- 11. Breathnach, R. & Chambon, P. (1981) Annu. Rev. Biochem. 50, 349-383.
- 12. McKnight, S. & Tjian, R. (1986) Cell 46, 795-805.
- 13. Dynan, W.S. (1986) *Trends Genet.* 2, 196-197.